EB1 and EB3 promote cilia biogenesis by several centrosome-related mechanisms.

نویسندگان

  • Jacob M Schrøder
  • Jesper Larsen
  • Yulia Komarova
  • Anna Akhmanova
  • Rikke I Thorsteinsson
  • Ilya Grigoriev
  • Robert Manguso
  • Søren T Christensen
  • Stine F Pedersen
  • Stefan Geimer
  • Lotte B Pedersen
چکیده

The microtubule (MT) plus-end-tracking protein EB1 is required for assembly of primary cilia in mouse fibroblasts, but the mechanisms involved and the roles of the related proteins EB2 and EB3 in ciliogenesis are unknown. Using protein depletion experiments and expression of dominant-negative constructs we show here that EB1 and EB3, but not EB2, are required for assembly of primary cilia in cultured cells. Electron microscopy and live imaging showed that cells lacking EB1 or EB3 are defective in MT minus-end anchoring at the centrosome and/or basal body, and possess abnormally short cilia stumps surrounded by vesicles. Further, GST pull-down assays, mass spectrometry and immunoprecipitation indicated that EB1 and EB3 interact with proteins implicated in MT minus-end anchoring or vesicular trafficking to the cilia base, suggesting that EB1 and EB3 promote ciliogenesis by facilitating such trafficking. In addition, we show that EB3 is localized to the tip of motile cilia in bronchial epithelial cells and affects the formation of centriole-associated rootlet filaments. Collectively, our findings indicate that EBs affect biogenesis of cilia by several centrosome-related mechanisms and support the idea that different EB1-EB3 dimer species have distinct functions within cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Leber Congenital Amaurosis Protein AIPL1 and EB Proteins Co-Localize at the Photoreceptor Cilium

PURPOSE The aim of this study was to investigate the interaction and co-localization of novel interacting proteins with the Leber congenital amaurosis (LCA) associated protein aryl hydrocarbon receptor interacting protein-like 1 (AIPL1). METHODS The CytoTrapXR yeast two-hybrid system was used to screen a bovine retinal cDNA library. A novel interaction between AIPL1 and members of the family ...

متن کامل

EB3 Regulates Microtubule Dynamics at the Cell Cortex and Is Required for Myoblast Elongation and Fusion

During muscle differentiation, myoblasts elongate and fuse into syncytial myotubes [1]. An early event during this process is the remodeling of the microtubule cytoskeleton, involving disassembly of the centrosome and, crucially, the alignment of microtubules into a parallel array along the long axis of the cell [2-5]. To further our understanding on how microtubules support myogenic differenti...

متن کامل

EB1 Is Required for Primary Cilia Assembly in Fibroblasts

EB1 is a small microtubule (MT)-binding protein that associates preferentially with MT plus ends and plays a role in regulating MT dynamics. EB1 also targets other MT-associated proteins to the plus end and thereby regulates interactions of MTs with the cell cortex, mitotic kinetochores, and different cellular organelles [1, 2]. EB1 also localizes to centrosomes and is required for centrosomal ...

متن کامل

Aurora B spatially regulates EB3 phosphorylation to coordinate daughter cell adhesion with cytokinesis

During mitosis, human cells round up, decreasing their adhesion to extracellular substrates. This must be quickly reestablished by poorly understood cytoskeleton remodeling mechanisms that prevent detachment from epithelia, while ensuring the successful completion of cytokinesis. Here we show that the microtubule end-binding (EB) proteins EB1 and EB3 play temporally distinct roles throughout ce...

متن کامل

EB1 and EB3 regulate microtubule minus end organization and Golgi morphology

End-binding proteins (EBs) are the core components of microtubule plus end tracking protein complexes, but it is currently unknown whether they are essential for mammalian microtubule organization. Here, by using CRISPR/Cas9-mediated knockout technology, we generated stable cell lines lacking EB2 and EB3 and the C-terminal partner-binding half of EB1. These cell lines show only mild defects in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 124 Pt 15  شماره 

صفحات  -

تاریخ انتشار 2011